# The Crystal Structures of $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-Tris(2,4-pentanedionato)vanadium(III)* 

By B. Morosin<br>Sandia Laboratories, Albuquerque, New Mexico 87115, U.S.A.<br>and H. Montgomery<br>Royal Roads Military College, Victoria, B.C., Canada

(Received 17 May 1968 and in revised from 28 July 1968)


#### Abstract

Tris(2,4-pentanedionato)vanadium(III), $\mathrm{V}\left(\mathrm{CH}_{3} \mathrm{COCHCOCH}_{3}\right)_{3}$, crystallizes in two forms, $\alpha$ in space group Pcab with eight discrete molecules in a cell of dimensions $a_{0}=15 \cdot 43, b_{0}=16 \cdot 60$ and $c_{0}=13 \cdot 53 \AA$ and $\beta$ in space group $P 2_{1} / n$ with four discrete molecules in a cell of dimensions $a_{0}=16 \cdot 34, b_{0}=13 \cdot 06$, $c_{0}=8 \cdot 108 \AA$ and $\beta=90 \cdot 00^{\circ}$. The structures were refined by the full-matrix least-squares method by use of three-dimensional Mo $K \alpha$ data to $R=0.066$ and 0.102 for the $\alpha$ and $\beta$ forms, respectively. The mean values of chemically equivalent interatomic separations in the two forms are $1.981 \AA$ for V-O, $1.259 \AA$ for $\mathrm{O}-\mathrm{C}, 1.386 \AA$ for ring $\mathrm{C} \cdots \mathrm{C}$ and $1.518 \AA$ for $\mathrm{C}-\mathrm{C}$ (methyl). The slight trigonal distortion of the octahedron formed by the oxygen atoms about the vanadium atom is due to the mean $\mathrm{O}-\mathrm{V}-\mathrm{O}$ intraring angle of $87.7^{\circ}$.


## Introduction

The crystal structures for the trivalent metal 2,4-pentanedione compounds appear to be grouped into several isomorphous series (Astbury, 1926). The structural parameter responsible for these different packing arrangements probably is the metal-oxygen separation and can best be reflected in the molar volume; hence, for example, the complexes of $\mathrm{Al}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Cr}$, and one allotrope of Ga with molar volumes $<430 \AA^{3}$ belong to a monoclinic, $P 2_{1} / c$, isomorphic set while those of $\mathrm{Fe}, \mathrm{In}, \mathrm{Sc}$ and another allotrope of Ga with molar volumes $>430 \AA^{3}$ were reported to belong to two different orthorhombic space groups. One form of tris(2,4-pentanedionato)vanadium(III), hereafter $\alpha$ $\mathrm{V}(\mathrm{Acac})_{3}$, with a molar volume of $433 \AA^{3}$ has been found to be isomorphous with the iron complex; for the other form, $\beta-\mathrm{V}(\mathrm{Acac})_{3}$, no complete structure study has yet been reported. In both of these polymorphic forms the metal-oxygen bond is shorter and presumably more covalent than that found in the iron complex (Iball \& Morgan, 1967).

## Experimental

Two methods were used to synthesize the compound. The first involved the electrolytic reduction of $\mathrm{VOSO}_{4}$ to $\mathrm{V}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and subsequent reaction with 2,4 -pentanedione (HAcac) in the presence of mild alkali (sodium carbonate). The crude precipitate was recrystallized from benzene, methanol or 2,4-pentanedione. Chlorinated solvents $\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were found to

[^0]encourage oxidation to $\mathrm{VO}(\mathrm{Acac})_{2}$. No special precautions were taken to exclude air, and there was no appreciable oxidation in the solvents first named. A second method was essentially that of Grdenic \& Korper-Colig (1964), except that the zinc derivative was separated from the vanadium one by extraction with petroleum spirit (Phillips $60-90^{\circ}$ cut) in a Sohxlet apparatus. The melting point was $186-189^{\circ}$ (reported 185-189, Morgan \& Moss, 1913). However, it is obvious that some oxidation takes place during the melting process. Analysis for vanadium was determined by weighing $\mathrm{V}_{2} \mathrm{O}_{5}$ after the compound was heated with $\mathrm{HNO}_{3}$; for $\mathrm{V}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}$ calculated V content is $14.63 \%$, found $14.56 \%$. The density, determined by the flotation technique using $\mathrm{CCl}_{4}$ and alcohol was found to be $1.33 \mathrm{~g} . \mathrm{cm}^{-3}$; with $z=8$ and $\mathrm{Vol}=3467 \AA^{3}$, the calculated value for the $\alpha$ form is $1.334 \mathrm{~g} . \mathrm{cm}^{-3}$.
The symmetry of the lattice was verified by Weissenberg and precession photographs taken with $\mathrm{Cu} K \alpha$ and Mo $K \alpha$ radiation. On several batches of crystals (designated the $\alpha$ form), systematic absences of 0 kl for $l$ odd, of $h 0 l$ for $h$ odd and of $h k 0$ for $k$ odd unequivocally established the space group as Pcab, cell edges selected to conform to Donnay's (1943) rules. A comparison of intensities quickly showed that this compound is probably isostructural with the $\mathrm{Fe}^{\mathrm{III}}$ analogue. Other batches of crystals were first thought to be of orthorhombic symmetry (belonging to space group Pnm2) and to be isostructural with Ga , In and Sc compounds reported by Astbury (1926). However, a few discrepancies were noted between $h k l$ and $h k \bar{l}$ intensities. More careful observations on several crystal specimens suggested the symmetry to be monoclinic. The variation from crystal to crystal of the intensity ratio for certain pairs of $h k l$ and $h k \bar{l}$ reflections (those which had large intensity differences) suggested that
intimate twinning with rather small domain size occurs in this form. With systematic absences of $h 0 l$ for $h+l$ odd and $0 k 0$ for $k$ odd, the space group is established to be $P 2_{1} / n$. The following lattice constants were obtained by least-squares fit of the diffractometer settings using Mo $K \alpha$ radiation ( $\lambda$ for $K \alpha_{1}=0.70926 \AA$ ):
\[

$$
\begin{array}{ll}
\alpha-\mathrm{V}(\mathrm{Acac})_{3} & \beta-\mathrm{V}(\mathrm{Acac})_{3} \\
a_{0}=15.43(2) & 16 \cdot 34(1) \\
b_{0}=16.60(2) & 13.06(1) \\
c_{0}=13.53(1) & 8 \cdot 108(5) \\
& \beta=90.00(3)^{\circ} .
\end{array}
$$
\]

Three-dimensional Mo $K \alpha$ intensity data were measured by use of the $\theta-2 \theta$ scan technique on a Picker diffractometer equipped with an $\mathrm{E} \& \mathrm{~A}$ full-circle Eulerian orienter. A Datex automatic control module was used for setting the angles of the 3061 possible intensity data (up to $60^{\circ} 2 \theta$ ) investigated for the $\alpha$ form. Only 1361 of these measured intensity data were considered observed; the remaining 1700 were measured to be less than $3 \sigma\left(\sigma=\sqrt{N_{s c}+K}\left(\bar{N}_{b_{1}}+N_{b_{2}}\right)\right.$, where $N_{s c}, N_{b}$ and $K$ are the total scan count, background counts and scan time divided by total background time, respectively) and, hence, assigned a value equal to $3 \sigma$, and considered as unobserved in subsequent calculations. For the $\beta$ form, 3043 intensity data were meas-
ured of which 1703 and 1340 were considered observed and unobserved, respectively. The crystal specimen used for data collection was selected from the many photographed on the basis of showing the largest intensity differences between $h k l$ and $h k \bar{l}$. Absorption corrections were considered unnecessary for either crystal; for the $\alpha$ form, the crystal was of dimensions $0.27 \times 0.20 \times 0.55 \mathrm{~mm}\left(\mu=8.8 \mathrm{~cm}^{-1}\right.$ for Mo $K \alpha$ ) while that for the $\beta$ form was $0.18 \times 0.18 \times 0.35 \mathrm{~mm}$; both were mounted on the long direction.

Lorentz and polarization factors were applied and structure factors calculated by use of neutral scattering factors from Table 3.3.1A (p.202) of International Tables for X-ray Crystallography (1962). The dispersion correction for vanadium was not included. The function, $\Sigma w\left(F_{o}-F_{c}\right)^{2}$, was minimized for our leastsquares refinements. Weights were assigned from counting statistics with no additional error included for instrument instability; unobserved reflections were assigned zero weight if $\left|F_{o}\right|>\left|F_{c}\right|$.

## Structure determinations

For the $\alpha$ form a three-dimensional Patterson function was consistent with vanadium atoms at $0 \cdot 140,0 \cdot 245$, 0.270 ; the subsequent Fourier synthesis yielded atomic positions very similar to those for the iron complex.


Fig.1. The labeling scheme and partial molecular arrangement for $\alpha$-tris(2,4-pentanedionato)vanadium(III). The projection viewed along the $c$ axis only includes atoms of molecules centered near $z$ equal to $\frac{4}{4}$.

Four cycles of least-squares refinement with isotropic thermal parameters resulted in an $R$ value, $R=$ $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|$, of $0 \cdot 114$; subsequent refinement with anisotropic thermal parameters reduced $R$ to 0.081 . A three-dimensional difference synthesis yielded the locations of all the hydrogen atoms (Table 1). Six further cycles of least-squares refinement resulted in $R=0.066$; the ratios of average shifts to estimated errors and of maximum shift to estimated error were 0.01 and 0.07 , respectively. Final coordinates are given in Table 2. Observed and calculated structure factors may be obtained from the authors. The labeling scheme and molecular arrangement are shown in Fig. 1.

For the $\beta$ form a three-dimensional Patterson function indicated vanadium atoms to be situated at 0.25 ,
$0.01,0.04$; the subsequent Fourier synthesis yielded light atom positions which could be assigned to two different molecular packings. Subsequent difference syntheses and least-squares refinement of partial sets of atoms for both models quickly eliminated one choice; the remaining model was refined by use of anisotropic thermal parameters to an $R$ value of 0.124 . At this point it was noted that for pairs of $h k l$ and $h k \bar{l}$ which involved very strong and weak observed values, the weak reflection always was assigned an observed value larger than the calculated value. There were 193 such pairs in which $I_{\text {strong }}>3 I_{\text {weak }}$; these pairs were used to obtain the amount of satellite twin possibly present in the crystal specimen used for data collection. The average volume of the suggested twin is near $10 \%$ ( 21 pairs indicated no twin present; of these 4 were discarded from the averaging procedure). The total set of intensity data was corrected assuming such a satellite and subjected to two final cycles of least-squares refinement (weights were not altered from those previously assigned). The resulting $R$ is 0.102 . A three-dimensional difference synthesis did not show any anomalous peaks; the small peaks present did not always yield consistent hydrogen positions and, hence, none were included in our structure determination. Final coordinates are given in Table 3 and the labeling scheme and molecular arrangement are shown in Fig. 2.

## Discussion

The molecular packings of $\mathrm{Fe}(\mathrm{Acac})_{3}$ and $\alpha-\mathrm{V}(\mathrm{Acac})_{3}$ are very similar as had been indicated by comparison of the corresponding intensity data. The mean values of chemically equivalent interatomic separations in the $\alpha$ form (Table 4) are $1.979 \AA$ for $\mathrm{V}-\mathrm{O}, 1.256 \AA$ for O-C, $1.383 \AA$ for ring $\mathrm{C} \ldots \mathrm{C}$ and $1.518 \AA$ for $\mathrm{C}-\mathrm{C}$

Table 2. Final atomic coordinates and anisotropic temperature factors for $\alpha-\mathrm{V}(\mathrm{Acac})_{3}$

|  | $\boldsymbol{x}$ | $y$ | $z$ | $B_{11}$ | $B_{22}$ | $B_{33}$ | $B_{12}$ | $B_{13}$ | $B_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | $0 \cdot 14173$ (6) | $0 \cdot 24556$ (6) | $0 \cdot 26692$ (6) | $3 \cdot 46$ (3) | $3 \cdot 27$ (3) | $2 \cdot 66$ (3) | -0.37(5) | $0 \cdot 43$ (3) | -0.31 (4) |
| O(1) | 0.0764 (3) | 0.3214 (3) | 0.3514 (3) | $4 \cdot 7$ (2) | $5 \cdot 4$ (2) | $3 \cdot 5$ (2) | $1 \cdot 2$ (3) | $0 \cdot 5$ (2) | $-1 \cdot 1$ (2) |
| O(2) | 0.0447 (2) | 0.2491 (4) | $0 \cdot 1716$ (3) | $3 \cdot 1$ (2) | $6 \cdot 2$ (2) | 4.0 (2) | -0.3 (2) | $0 \cdot 3$ (1) | -0.2 (2) |
| $\mathrm{O}(3)$ | $0 \cdot 0913$ (3) | $0 \cdot 1527$ (3) | 0.3364 (3) | $5 \cdot 6$ (2) | $4 \cdot 7$ (2) | $4 \cdot 0$ (2) | -1.4 (2) | $1 \cdot 4$ (2) | -0.0 (2) |
| $\mathrm{O}(4)$ | $0 \cdot 2017$ (3) | $0 \cdot 1673$ (3) | $0 \cdot 1797$ (3) | $4 \cdot 4$ (2) | $4 \cdot 8$ (2) | $3 \cdot 9$ (2) | 0.5 (2) | $1 \cdot 4$ (2) | -0.4 (2) |
| $\mathrm{O}(5)$ | $0 \cdot 2385$ (3) | 0.2494 (4) | $0 \cdot 3646$ (3) | $5 \cdot 3$ (2) | $5 \cdot 7$ (2) | $2 \cdot 8$ (2) | -0.0 (3) | -0.1 (1) | 0.9 (2) |
| O(6) | $0 \cdot 2006$ (3) | 0.3324 (3) | $0 \cdot 1933$ (3) | $5 \cdot 9$ (3) | $4 \cdot 4$ (2) | $3 \cdot 4$ (2) | -1.4 (2) | -0.4 (2) | $1 \cdot 3$ (2) |
| C(1) | 0.0031 (5) | $0 \cdot 3517$ (4) | 0.3376 (5) | $6 \cdot 0$ (4) | $3 \cdot 2$ (5) | $4 \cdot 3$ (3) | $0 \cdot 8$ (3) | 1.0 (3) | $0 \cdot 0$ (2) |
| C(2) | -0.0246 (5) | $0 \cdot 2858$ (5) | $0 \cdot 1777$ (5) | 4.9 (3) | $6 \cdot 5$ (4) | $3 \cdot 2$ (3) | -1.0(3) | 0.5 (2) | $0 \cdot 6$ (2) |
| $\mathrm{C}(12)$ | -0.0484 (5) | 0.3392 (5) | $0 \cdot 2539$ (6) | $5 \cdot 9$ (4) | $6 \cdot 1$ (4) | $4 \cdot 0$ (3) | 1.9 (3) | $0 \cdot 5$ (3) | $0 \cdot 0$ (3) |
| $\mathrm{C}(1 X)$ | -0.0274 (8) | $0 \cdot 4083$ (6) | $0 \cdot 4195$ (7) | $12 \cdot 1$ (8) | $7 \cdot 0$ (5) | $6 \cdot 2$ (5) | $4 \cdot 1$ (5) | $1 \cdot 4$ (5) | -1.4 (4) |
| $\mathrm{C}(2 X)$ | -0.0860 (5) | $0 \cdot 2770$ (6) | 0.0904 (6) | 3.6 (3) | $12 \cdot 0$ (8) | 3.7 (3) | $0 \cdot 9$ (4) | -0.2 (2) | 0.7 (4) |
| C(3) | 0.0956 (6) | 0.0791 (5) | $0 \cdot 3134$ (6) | $7 \cdot 7$ (5) | 3.9 (3) | $5 \cdot 6$ (4) | -1.3 (3) | 0.4 (4) | $1 \cdot 4$ (3) |
| C(4) | $0 \cdot 1900$ (5) | 0.0921 (4) | $0 \cdot 1707$ (5) | $4 \cdot 2$ (3) | 4.9 (3) | $5 \cdot 3$ (4) | 1.4 (3) | -0.4 (3) | -1.2 (3) |
| C(34) | $0 \cdot 1370$ (7) | 0.0477 (4) | 0.2316 (7) | $8 \cdot 8$ (5) | $3 \cdot 2$ (3) | $7 \cdot 2$ (5) | -1.6 (3) | $1 \cdot 5$ (5) | -1.2 (3) |
| $\mathrm{C}(3 X)$ | 0.0459 (7) | 0.0240 (5) | $0 \cdot 3830$ (7) | $10 \cdot 5$ (7) | $4 \cdot 9$ (4) | $8 \cdot 3$ (6) | -1.3 (4) | $1 \cdot 8$ (5) | 1.9 (4) |
| $\mathrm{C}(4 X)$ | $0 \cdot 2392$ (7) | 0.0525 (6) | 0.0887 (7) | $8 \cdot 5$ (6) | $7 \cdot 8$ (5) | $6 \cdot 6$ (5) | $2 \cdot 9$ (4) | 0.3 (4) | -3.7(4) |
| C(5) | $0 \cdot 3035$ (5) | $0 \cdot 2953$ (5) | $0 \cdot 3669$ (5) | 4.4 (3) | $5 \cdot 6$ (4) | $3 \cdot 5$ (3) | -0.3 (3) | -0.2 (3) | -1.6 (3) |
| C(6) | $0 \cdot 2726$ (5) | $0 \cdot 3643$ (4) | $0 \cdot 2120$ (5) | $5 \cdot 5$ (4) | 5.7 (3) | $4 \cdot 5$ (3) | -1.6 (3) | 0.7 (3) | 0.7 (3) |
| C(56) | $0 \cdot 3220$ (6) | $0 \cdot 3497$ (6) | $0 \cdot 2958$ (6) | $5 \cdot 5$ (4) | $6 \cdot 7$ (4) | $6 \cdot 0$ (4) | -2.0 (4) | -0.7 (3) | 0.7 (4) |
| C(5X) | $0 \cdot 3607$ (7) | $0 \cdot 2859$ (6) | $0 \cdot 4580$ (6) | $7 \cdot 3$ (5) | $11 \cdot 5$ (7) | $5 \cdot 0$ (4) | $0 \cdot 1$ (5) | -3.4 (4) | -0.0 (4) |
| C (6X) | $0 \cdot 3021$ (7) | $0 \cdot 4233$ (6) | $0 \cdot 1330$ (8) | $7 \cdot 8$ (6) | $8 \cdot 1$ (6) | $9 \cdot 2$ (6) | -3.3 (5) | -0.1 (5) | $4 \cdot 2$ (5) |

Table 3. Final atomic coordinates and anisotropic temperature factors for $\beta-\mathrm{V}(\mathrm{Acac})_{3}$

|  | $x$ | $y$ | $z$ | $B_{11}$ | $B_{22}$ | $B_{33}$ | $B_{12}$ | $B_{13}$ | $B_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | $0 \cdot 2490$ (1) | $0 \cdot 0096$ (1) | 0.0432 (2) | $3 \cdot 25$ (5) | $2 \cdot 64$ (5) | $2 \cdot 46$ (4) | $0 \cdot 08$ (5) | $0 \cdot 02$ (9) | $0 \cdot 12$ (6) |
| O(1) | $0 \cdot 1959$ (4) | -0.1279 (5) | 0.0447 (8) | $4 \cdot 4$ (3) | $3 \cdot 6$ (1) | $4 \cdot 0$ (3) | -0.0 (3) | $0 \cdot 7$ (3) | $0 \cdot 2$ (2) |
| O (2) | $0 \cdot 1477$ (5) | 0.0636 (5) | $0 \cdot 1479$ (9) | $5 \cdot 2$ (4) | $4 \cdot 2$ (1) | $5 \cdot 1$ (3) | $0 \cdot 6$ (3) | -0.3 (3) | $-0 \cdot 6$ (2) |
| $\mathrm{O}(3)$ | $0 \cdot 2087$ (4) | $0 \cdot 0355$ (5) | -0.1830 (7) | $5 \cdot 8$ (3) | $4 \cdot 4$ (2) | $3 \cdot 1$ (2) | -0.4 (3) | $-1 \cdot 3$ (4) | $-0 \cdot 1$ (2) |
| $\mathrm{O}(4)$ | $0 \cdot 2975$ (4) | $0 \cdot 1475$ (5) | 0.0390 (7) | $5 \cdot 4$ (3) | $3 \cdot 8$ (1) | $3 \cdot 2$ (2) | -1.3 (3) | -0.7 (3) | $0 \cdot 3$ (2) |
| $\mathrm{O}(5)$ | $0 \cdot 3485$ (4) | -0.0571 (5) | -0.0488 (8) | $3 \cdot 9$ (3) | $5 \cdot 3$ (2) | $3 \cdot 8$ (3) | $0 \cdot 8$ (3) | $0 \cdot 5$ (3) | -0.6 (2) |
| O (6) | $0 \cdot 2978$ (4) | -0.0139 (5) | 0.2667 (7) | $4 \cdot 1$ (3) | $5 \cdot 3$ (2) | $3 \cdot 4$ (2) | $0 \cdot 7$ (3) | -0.0 (3) | 0.7 (2) |
| C(1) | $0 \cdot 1249$ (6) | -0.1532 (7) | 0.0883 (10) | $3 \cdot 7$ (4) | $3 \cdot 5$ (3) | $3 \cdot 2$ (3) | -0.2 (3) | $0 \cdot 8$ (3) | $0 \cdot 6$ (3) |
| C(2) | $0 \cdot 0807$ (6) | $0 \cdot 0204$ (8) | $0 \cdot 1774$ (11) | $4 \cdot 1$ (4) | $5 \cdot 5$ (4) | $3 \cdot 1$ (3) | $0 \cdot 1$ (4) | -1.0 (3) | $0 \cdot 2$ (3) |
| C(3) | $0 \cdot 2099$ (5) | $0 \cdot 1186$ (7) | -0.2667 (10) | $3 \cdot 5$ (3) | $3 \cdot 8$ (3) | $2 \cdot 9$ (3) | $0 \cdot 1$ (3) | $0 \cdot 2$ (3) | -0.2 (3) |
| C(4) | $0 \cdot 2871$ (6) | 0.2197 (7) | -0.0709 (11) | $3 \cdot 5$ (4) | $3 \cdot 9$ (4) | $4 \cdot 2$ (4) | $0 \cdot 3$ (3) | $1 \cdot 1$ (3) | $0 \cdot 0$ (2) |
| C(5) | $0 \cdot 4080$ (6) | -0.0973 (8) | 0.0208 (13) | $3 \cdot 6$ (4) | $4 \cdot 7$ (5) | $5 \cdot 7$ (4) | $0 \cdot 4$ (4) | $1 \cdot 6$ (3) | $1 \cdot 1$ (4) |
| C(6) | $0 \cdot 3614$ (6) | -0.0586 (8) | $0 \cdot 3056$ (12) | $5 \cdot 3$ (5) | $5 \cdot 0$ (5) | $3 \cdot 5$ (3) | $0 \cdot 2$ (4) | $-1 \cdot 0$ (3) | $0 \cdot 9$ (4) |
| C(12) | 0.0670 (7) | -0.0858 (10) | $0 \cdot 1539$ (12) | $4 \cdot 9$ (5) | $7 \cdot 7$ (6) | $3 \cdot 4$ (3) | $-1 \cdot 0$ (5) | $0 \cdot 1$ (3) | -0.4 (4) |
| C(34) | $0 \cdot 2468$ (6) | $0 \cdot 2088$ (8) | -0.2163 (9) | $5 \cdot 4$ (5) | $4 \cdot 9$ (5) | $2 \cdot 3$ (3) | $1 \cdot 3$ (4) | -0.8 (3) | $0 \cdot 0$ (3) |
| C (56) | $0 \cdot 4168$ (8) | $-0 \cdot 1020$ (10) | $0 \cdot 1912$ (17) | $5 \cdot 2$ (5) | $6 \cdot 8$ (6) | $7 \cdot 0$ (5) | 1.0 (5) | -0.7 (4) | $0 \cdot 8$ (6) |
| $\mathrm{C}(1 X)$ | $0 \cdot 1040$ (9) | -0.2636 (9) | 0.0713 (17) | $7 \cdot 9$ (8) | $5 \cdot 3$ (6) | $7 \cdot 3$ (6) | $-2 \cdot 3$ (6) | $1 \cdot 1$ (5) | -0.7 (5) |
| $\mathrm{C}(2 X)$ | 0.0099 (7) | 0.0872 (11) | 0.2530 (13) | $5 \cdot 4$ (5) | $8 \cdot 9$ (7) | $3 \cdot 7$ (4) | $2 \cdot 5$ (6) | -0.8(4) | -0.7 (5) |
| $\mathrm{C}(3 X)$ | $0 \cdot 1690$ (8) | $0 \cdot 1154$ (9) | -0.4376 (12) | $6 \cdot 2$ (6) | $6 \cdot 3$ (7) | $3 \cdot 8$ (4) | $1 \cdot 1$ (5) | -0.7 (4) | $0 \cdot 8$ (5) |
| $\mathrm{C}(4 X)$ | $0 \cdot 3279$ (7) | $0 \cdot 3194$ (8) | -0.0273 (13) | $6 \cdot 2$ (6) | $3 \cdot 6$ (6) | $5 \cdot 2$ (4) | -1.0 (5) | -0.5 (4) | $0 \cdot 8$ (4) |
| $\mathrm{C}(5 X)$ | $0 \cdot 4725$ (8) | $-0 \cdot 1427$ (11) | -0.0896 (18) | $5 \cdot 4$ (7) | $8 \cdot 3$ (8) | $8 \cdot 1$ (7) | $2 \cdot 2$ (6) | $3 \cdot 3$ (5) | 0.7 (6) |
| $\mathrm{C}(6 X)$ | $0 \cdot 3789$ (9) | -0.0616 (11) | $0 \cdot 4905$ (14) | $8 \cdot 1$ (8) | $7 \cdot 9$ (8) | $3 \cdot 8$ (4) | -0.6 (6) | $-1 \cdot 3$ (4) | $2 \cdot 5$ (5) |



Fig. 2. The labeling scheme and molecular arrangement for $\beta$-tris(2,4-pentanedionato)vanadium(III). The projection is viewed along the $c$ axis.
(methyl). These nonmetal values (as well as those found in the $\beta$ form) compare favorably with the corresponding values determined for the iron complex ( $1 \cdot 258$, 1.377 and $1.530 \AA$; Iball \& Morgan, 1967) or for other metal acetylacetonates (Lingafelter \& Braun, 1967). The octahedron formed by oxygen atoms about the vanadium atom is trigonally distorted in both forms owing to the mean $\mathrm{O}-\mathrm{V}-\mathrm{O}$ intraring angle of $87.7^{\circ}$.

Table 4. Intramolecular bond lengths and angles

|  | $\alpha$ form | $\beta$ form |
| :---: | :---: | :---: |
| V-O(1) | 1.977 (8) Å | 1.983 (8) $\AA$ |
| $\mathrm{V}-\mathrm{O}(2)$ | 1.977 | 1.997 |
| $\mathrm{V}-\mathrm{O}(3)$ | 1.967 | 1.980 |
| $\mathrm{V}-\mathrm{O}(4)$ | 1.984 | 1.966 |
| $\mathrm{V}-\mathrm{O}(5)$ | 1.995 | 1.976 |
| $\mathrm{V}-\mathrm{O}(6)$ | 1.974 | 1.992 |
| Average | 1.979 | 1.982 |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | 1.253 (14) | 1.261 (16) |
| $\mathrm{O}(2)-\mathrm{C}(2)$ | 1.235 | 1.254 |
| $\mathrm{O}(3)-\mathrm{C}(3)$ | 1.263 | 1.276 |
| $\mathrm{O}(4)-\mathrm{C}(4)$ | 1.268 | 1.301 |
| $\mathrm{O}(5)-\mathrm{C}(5)$ | 1.261 | $1 \cdot 240$ |
| O (6)-C(6) | $1 \cdot 258$ | $1 \cdot 241$ |
| Average | 1.256 | $1 \cdot 262$ |
| $\mathrm{C}(1)-\mathrm{C}(12)$ | $1 \cdot 399$ (19) | $1 \cdot 391$ (21) |
| $\mathrm{C}(2)-\mathrm{C}(12)$ | $1 \cdot 408$ | 1.401 |
| C(3)-C(34) | 1.379 | 1.383 |
| C(4)-C(34) | $1 \cdot 376$ | $1 \cdot 368$ |
| C(5)-C(56) | $1 \cdot 350$ | $1 \cdot 394$ |
| C(6)-C(56) | $1 \cdot 387$ | $1 \cdot 412$ |
| Average | 1.383 | $1 \cdot 391$ |
| $\mathrm{C}(1)-\mathrm{C}(1 X)$ | 1.528 (21) | 1.480 (23) |
| $\mathrm{C}(2)-\mathrm{C}(2 X)$ | 1.520 | 1.579 |
| $\mathrm{C}(3)-\mathrm{C}(3 X)$ | 1.520 | 1.533 |
| $\mathrm{C}(4)-\mathrm{C}(4 X)$ | 1.497 | $1 \cdot 502$ |
| $\mathrm{C}(5)-\mathrm{C}(5 X)$ | 1.525 | $1 \cdot 490$ |
| C (6)-C(6X) | 1.520 | 1.526 |
| Average | 1.518 | 1.518 |
| $\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(2)$ | 88.4 (6) ${ }^{\circ}$ | 86.7 (6) ${ }^{\circ}$ |
| $\mathrm{O}(3)-\mathrm{V}-\mathrm{O}(4)$ | 87.5 | 87.9 |
| $\mathrm{O}(5)-\mathrm{V}-\mathrm{O}(6)$ | 88.1 | $87 \cdot 3$ |
| $\mathrm{V}-\mathrm{O}(1)-\mathrm{C}(1)$ | 129.0 (8) | $130 \cdot 7$ (8) |
| $\mathrm{V}-\mathrm{O}(2)-\mathrm{C}(2)$ | 128.9 | $130 \cdot 7$ |
| $\mathrm{V}-\mathrm{O}(3)-\mathrm{C}(3)$ | 128.3 | 129.0 |
| $\mathrm{V}-\mathrm{O}(4)-\mathrm{C}(4)$ | 129.5 | $138 \cdot 6$ |
| $\mathrm{V}-\mathrm{O}(5)-\mathrm{C}(5)$ | $129 \cdot 1$ | $131 \cdot 7$ |
| $\mathrm{V}-\mathrm{O}(6)-\mathrm{C}(6)$ | $127 \cdot 8$ | 129.2 |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(1 X)$ | $114 \cdot 6$ (9) | $116 \cdot 0$ (9) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(2 X)$ | 114.1 | 118.0 |
| $\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(3 X)$ | 113.7 | 116.7 |
| $\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(4 X)$ | $115 \cdot 6$ | 114.6 |
| $\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(5 X)$ | $114 \cdot 8$ | $117 \cdot 2$ |
| $\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(6 X)$ | 113.2 | 114.6 |
| $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(2)$ | 122.6 (9) | $125 \cdot 2$ (9) |
| C(3)-C(34)-C(4) | $123 \cdot 6$ | 123.9 |
| $\mathrm{C}(5)-\mathrm{C}(56)-\mathrm{C}(6)$ | $125 \cdot 7$ | 124.9 |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$ | $125 \cdot 1$ (9) | 123.5 (9) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(12)$ | $125 \cdot 8$ | 122.9 |
| $\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(34)$ | 126.0 | $125 \cdot 0$ |
| $\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(34)$ | $123 \cdot 7$ | $125 \cdot 0$ |
| $\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(56)$ | $123 \cdot 7$ | $122 \cdot 4$ |
| $\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(56)$ | $125 \cdot 2$ | $124 \cdot 3$ |

Table 4 (cont.)

|  | $\alpha$ form | $\beta$ form |
| :--- | :---: | :---: |
| $\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(1 X)$ | $120 \cdot 2(9)$ | $120 \cdot 5(9)$ |
| $\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(2 X)$ | $120 \cdot 3$ | $119 \cdot 0$ |
| $\mathrm{C}(34)-\mathrm{C}(3)-\mathrm{C}(3 X)$ | $120 \cdot 2$ | $118 \cdot 3$ |
| $\mathrm{C}(34)-\mathrm{C}(4)-\mathrm{C}(4 X)$ | $120 \cdot 7$ | $120 \cdot 4$ |
| $\mathrm{C}(56)-\mathrm{C}(5)-\mathrm{C}(5 X)$ | $121 \cdot 5$ | $120 \cdot 4$ |
| $\mathrm{C}(56)-\mathrm{C}(6)-\mathrm{C}(6 X)$ | $121 \cdot 5$ | $121 \cdot 2$ |

Iball \& Morgan concluded that the mean value of the iron-oxygen distance in $\mathrm{Fe}(\mathrm{Acac})_{3}$ was more compatible with an ionic than a covalent bond. For example, the sum of Pauling's (1960) values for trivalent octahedral ionic radii (p.518; iron, 0.64 ; oxygen, $1.35 \AA$ ) is in good agreement with the mean observed value of $1.992 \AA$. For $\mathrm{V}(\mathrm{Acac})_{3}$, the corresponding

(a)

(b)

Fig.3. ORTEP views of the molecules nearly along the threefold axes. (a) $\alpha$ form, (b) $\beta$ form.
radii (vanadium, $0.74 \AA$ ) total about $0.10 \AA$ more than those for the $\mathrm{Fe}-\mathrm{O}$ separation yet the observed mean value for the V-O separation is $1.981 \AA$. This value suggests that the V-O bond is more covalent than the corresponding $\mathrm{Fe}-\mathrm{O}$ bond. (Values for $\mathrm{V}-\mathrm{O}$ separation in vanadyl(IV) bisacetylacetonate and bisbenzoylacetonate have been determined to be near $1.97 \AA$ by Pfluger (1968); no other trivalent V-O separations are known to the authors.)

For two of the three chelate rings, the vanadium ion in the $\alpha$ form lies in the least-squares plane formed by the five atoms of the 2,4 -pentanedione ring. Only the ring atoms are included in calculation of the leastsquares plane because steric effects from crystal packing appear systematically to affect methyl groups in isomorphous sets of 2,4-pentanedione compounds (Morosin, 1967). A comparison of the corresponding values found in $\mathrm{Fe}(\mathrm{Acac})_{3}$ and $\alpha-\mathrm{V}(\mathrm{Acac})_{3}$ is given in Table 5. In both of these, it is clear that the metal ion lies off the least-squares plane in only one of the rings. For $\beta$-V(Acac) $)_{3}$ the metal ion lies off the plane for all three chelate rings. Since the structures of the Ga, In or Sc analogs have not been reported, one is not able to invoke packing effects for the $\beta$ form.

Fig. 3 illustrates the anisotropic thermal parameters for the two forms of $V(A c a c)_{3}$. In general the root mean square amplitudes are greater along directions perpendicular to the planes formed by the chelate rings than along chemical bonds. However, short contact separations between $\mathrm{C}(3 x)$ and $\mathrm{C}(3 x)$ on different molecules in $\alpha$-V(Acac) $)_{3}$ and between $\mathrm{C}(2 x)$ and $\mathrm{C}(12)$ as well as between $\mathrm{C}(2 x)$ and $\mathrm{C}(3 x)$ on different molecules
in $\beta$ - (Acac $_{3}$ account for part of the departures from the expected directions of the thermal ellipsoids.

Table 5. Distance of metal from ideal ligand plane

| $\alpha-\mathrm{V}(\mathrm{Acac})_{3}{ }^{*}$ | Metal | $A^{*}$ | $B^{*}$ | ${ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.003 | 0.010 | 0.015 | 0.016 |
|  | 0.227 | 0.045 | $0 \cdot 151$ | 0.029 |
|  | 0.004 | $0 \cdot 111$ | $0 \cdot 134$ | 0.026 |
| $\mathrm{Fe}(\mathrm{Acac})_{3}$ | 0.001 | 0.027 | 0.052 | 0.006 |
|  | 0.266 | 0.088 | $0 \cdot 208$ | 0.016 |
|  | 0.081 | 0.070 | $0 \cdot 139$ | 0.025 |
| $\beta-\mathrm{V}(\mathrm{Acac})_{3}$ | 0.089 | 0.001 | 0.049 | 0.012 |
|  | 0.173 | 0.032 | 0.072 | 0.006 |
|  | 0.075 | 0.038 | 0.063 | 0.004 |

* Acac $=\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} ; A$ is the methyl carbon closer to leastsquares plane; $B$ other methyl-carbon; and $\sigma$ is the standard deviation of the atoms (those defining the plane) from the least-squares plane.


## References

Astbury, W. T. (1926). Proc. Roy. Soc. A112, 448.
Donnay, J. D. H. (1943). Amer. Min. 28, 313, 470.
Grdenic, D. \& Korper-Colig, B. (1964). Inorg. Chem. 3, 1328.

Iball, J. \& Morgan, C. H. (1967). Acta Cryst. 23, 239. International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Lingafelter, E. C. \& Braun, R. (1967). J. Amer. Chem. Soc. 88, 2951.
Morgan, G. T. \& Moss, H. W. (1913). J. Chem. Soc. p. 78. Morosin, B. (1967). Acta Cryst. 22, 316.
Pauling, L. (1960). The Nature of the Chemical Bond 3rd ed. Ithaca: Cornell Univ. Press.
Pfluger, C. E. (1968). Inorg. Chem. 7, 363.

# The Crystal Structure of Thiamine Pyrophosphate 

By C.H.Carlisle and D.S.Cook<br>Department of Crystallography, Birkbeck College, London, W.C.1, England

(Received 1 July 1968)
An X-ray crystal structure analysis of triclinic thiamine pyrophosphate is reported. The space group is $P \mathrm{~T}$ with $a=13 \cdot 42, b=12 \cdot 24, c=15 \cdot 57 \AA, \alpha=56^{\circ} 20^{\prime}, \beta=95^{\circ} 46^{\prime}, \gamma=90^{\circ} 25^{\prime}$ and with two molecules in the asymmetric unit. The structure and molecular conformation differ from those of monoclinic thiamine pyrophosphate hydrochloride. The parameters of both the thiamine and pyrophosphate portions of the molecule are in general agreement with parameters of related crystal structures. The structure possesses layer-type characteristics and there is some evidence for end-to-end hydrogen bonding of the pyrophosphate groups, the oxygen atoms of which are in the staggered conformation.
The structure was solved by use of the three-dimensional Patterson function and successive partial Fourier syntheses of electron density, and refined to an $R$ value of $27.9 \%$ on 4920 non-zero observed reflexions.

## Introduction

Thiamine, or vitamin $B_{1}$, is an essential dietary factor for all animals. In man its deficiency is the cause of
the disease beriberi. Thiamine, however, functions in its coenzyme form, cocarboxylase or thiamine pyrophosphate, (TPP). The structural formula and conventional thiamine ring numbering is shown below.


[^0]:    * This work was supported in part by the U.S. Atomic Energy Commission and in part by the Defence Research Board of Canada.

